Homeostatic and nonhomeostatic modulation of learning in human motor cortex.
نویسندگان
چکیده
Motor learning is important throughout life for acquisition and adjustment of motor skill. The extent of motor learning may be modulated by the history of motor cortex activity, but little is known which metaplasticity rule (homeostatic vs nonhomeostatic) governs this interaction. Here, we explored in nine healthy adults the effects of three different paired associative stimulation (PAS) protocols on subsequent learning of rapid thumb flexion movements. PAS resulted in either a long-term potentiation (LTP)-like increase in excitability of the stimulated motor cortex (PAS(LTP)), or a long-term depression (LTD)-like decrease (PAS(LTD)), or no change (control condition, PAS(CON)). Learning was indexed by the increase in peak acceleration of the trained movement. Delays of 0 and 90 min between PAS and motor practice were tested. At the 0 min delay, PAS(LTD) strongly facilitated motor learning (homeostatic interaction), and PAS(LTP) also facilitated learning, although to a lesser extent (nonhomeostatic interaction). At the 90 min delay, PAS(LTD) facilitated learning, whereas PAS(LTP) depressed learning (interactions both homeostatic). Therefore, facilitation of learning by previous brain stimulation occurs primarily and most effectively through homeostatic interactions, but at the 0 min delay, nonhomeostatic mechanisms such as LTP-induced blockade of LTD and nonsaturated LTP-induced facilitation of learning might also play a role. The present findings demonstrate that motor learning in humans can be modulated by noninvasive brain stimulation and suggest the possibility of enhancing motor relearning in defined neurological patients.
منابع مشابه
Can ovariectomy and learning affect prefrontal cortex GABAAα1 receptor distribution in passive avoidance model in rats?
Introduction: The interaction between steroid hormones and neurotransmitters such as GABA has been proved. The regulation of muscimol binding to high-affinity GABAA receptors by estradiol and progesterone has been studied within distinct brain regions using in vitro quantitative autoradiography. There are few studies about the mechanism of the effect of steroid hormones on behaviors such as ...
متن کاملprelimbic of medial prefrontal cortex GABA modulation through testosterone on spatial learning and memory
Prefrontal cortex (PFC) is involved in multiple functions including attentional , spatial orientation, short and long-term memory. Our previous study indicated that microinjection of testosterone in CA1 impaired spatial learning and memory. Some evidence suggests that impairment effect of testosterone is mediated by GABAergic system. In the present study, we investigated the interaction of test...
متن کاملprelimbic of medial prefrontal cortex GABA modulation through testosterone on spatial learning and memory
Prefrontal cortex (PFC) is involved in multiple functions including attentional , spatial orientation, short and long-term memory. Our previous study indicated that microinjection of testosterone in CA1 impaired spatial learning and memory. Some evidence suggests that impairment effect of testosterone is mediated by GABAergic system. In the present study, we investigated the interaction of test...
متن کاملHomeostatic modulation of stimulation-dependent plasticity in human motor cortex.
Since recently, it is possible, using noninvasive cortical stimulation, such as the protocol of paired associative stimulation (PAS), to induce the plastic changes in the motor cortex, in humans that mimic Hebb's model of learning. Application of TMS conjugated with peripheral electrical stimulation at strictly coherent temporal manner lead to convergence of inputs in the sensory-motor cortex, ...
متن کاملTiming-dependent modulation of associative plasticity by general network excitability in the human motor cortex.
Associative neuroplasticity, which encompasses the modification of synaptic strength by coactivation of two synaptic inputs, has been linked to learning processes. Because unlimited plasticity destabilizes neuronal networks, homeostatic rules were proposed and experimentally proven that control for the amount and direction of plasticity dependent on background network activity. Accordingly, low...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 29 17 شماره
صفحات -
تاریخ انتشار 2009